
ITF Ingenieurbüro, Dipl. Ing. Thomas Friedmann
info@itf-it.de - www.itf-it.de

Version 1.5 – 17.12.2012

Manual
TPDFImage for Delphi
This Component allows displaying and printing PDF files in Delphi applications without the
need for Acrobat Reader to be installed. This is done by using ghostscript as renderer for the
PDF files. You only have to include gsdll32.dll and the folders /lib and /fonts (included in this
ZIP) with your application.

Restrictions:

a.) This component can‘t write PDF files.

 New in Version 1.3: By using SynPDF (Synopse, http://synopse.info/forum/),
 a Freeware PDF creation library (native Delphi) you can also write PDF files with
 TPDFImage. But the resulting PDF contains only embedded graphics, TOC and
 searching is gone then. I personally use this to extract pages from scanned PDF
 documents. Can be activated with compiler definition USESYNPDF if SynPDF is
 in the searchpath of Delphi. (see TestPDF project)

b.) Since a PDF is RENDERED to a graphic there is no search possible inside the document.
 Therefore the primary use of this component is to display or print smaller PDF files. When
 these files are created by scanning a document this component is perfect in use.

 New in Version 1.2: By changing the method to count available pages you can now also
 open very large PDF files (> 200 pages) in an acceptable time (3-5s). This was tested
 with the manual of VirtualTreeView from Mike Lische (810 pages).

New in Version 1.4: Tested and optimized for use in multithreaded environments.
Several smaller enhancements.

New in Version 1.5: Smaller corrections for Delphi 7 and up. Without the use of SynPDF
TPDFImage saves the current page as Bitmap when using SaveToStream.

License

This component is free to use defined by Mozilla Public Licence (MPL) 1.1 The usage in
commercial software is truly allowed.

Copyright 2011, ITF Ingenieurbüro, Dipl. Ing. Thomas Friedmann

Copyright for the API Header von Ghostscript (gsapi.pas und gsview.pas) Alessandro Briosi
These files are rewritten by me to load dynamically.

Installation

It is enough to copy the files itfGSApiDynamic.pas and itfPDFImage.pas to a folder and to
add this folder to your search path in Delphi. You only need to add itfPDFImage to your uses
clause to make the unit registering TPDFImage as class for opening PDF files (and .ps and
.eps) at TPicture in graphics.

For runtime you need the ghostscript API DLL (gsdll32.dll) which you can find at any
ghostscript Installation at the folder bin. Additional you need the folder /fonts und /lib with
their content in your application folder (included in ZIP file).

The class TPDFImage inherits from TBitmap and inherits all properties and methods from
TBitmap.

Additional Properties

Name Datatype Function
Resolution Integer Sets the resolution in DPI for rendering the PDF.

Default is the DPI value TScreen delivers.
For printing you should set a resolution that fits your
needs on quality.

Zoom Integer Sets a zoom factor for displaying in a TImage. It’s
independent from resolution but these two values are
responsible for what resolution ghostscript is told to
render at.

PageCount Integer After loading a PDF-file with LoadFromFile or
LoadFromStream this property (read only) shows the
number of pages for this file.

CurrentPage Integer Contains the actual rendered page. By modifying this
value in the range of 1 .. PageCount you can show
another page of the file.

Additional methods

Name Parameter Function
FirstPage - Shows first page of the file
NextPage - Shows next page of the file
PreviousPage - Shows previous page of the file
LastPage - Shows last page of the file
ExtractPagesToFile AFileName:String

APageFrom,
APageTo:Integer
AAppend:Boolean

New in Version 1.3
Extracts a page range to a new PDF
file. ATTENTION: the created PDF only
contains embedded graphics so TOC
and searching is gone.
With AAppend = TRUE and AFileName
is an existing PDF the extracted Pages
are append to the existing PDF.
ATTENTION: the PDF is also converted
to a Graphical PDF.

To save all pages use SaveToFile or
SaveToStream.

ExtractPagesToStream AStream:TStream
APageFrom,
APageTo:Integer

New in Version 1.3
Extracts a page range to a Stream.
(look at ExtractPagesToFile)

SaveToStream AStream:TStream New in Version 1.5
When using SynPDF the PDF is
rendered and saved as PDF. If not
using SynPDF the current page is saved
as Bitmap.

Global Variables

New to Version 1.2

Name Default Function
ProgressivePageCount TRUE Defines if a jumpsearch is used for

scanning the pagecount. It’s more
effective for large PDF (> 200 pages).

PathToGSDLL <Programpath> Defines path to gsdll32.dll
PathToGSLib <Programpath>\lib Defines Path to \lib
PathToGSFonts <Programpath>\fonts Defines Path to \fonts
MultiThreaded FALSE Changes behavior for freeing internal

used bitmaps when running
multithreaded so there is no memory
lost.

Example of usage

unit fMainSimple;

Neu in Version 1.5
Wenn SynPDF verwendet wird, wird das PDF als PDF gespeichert (gerendert). Wenn
SynPDF nicht verwendet wird dann wird die aktuelle Seite als Bitmap gespeichert.

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, C ontrols, Forms, Dialogs,
 StdCtrls, ExtCtrls, itfPDFImage;

type
 TForm1 = class(TForm)
 Image1: TImage;
 btnLoad: TButton;
 btnPrev: TButton;
 btnNext: TButton;
 Label1: TLabel;
 btnZoomIn: TButton;
 btnZoomOut: TButton;
 procedure btnLoadClick(Sender: TObject);
 procedure btnPrevClick(Sender: TObject);
 procedure btnNextClick(Sender: TObject);
 procedure btnZoomInClick(Sender: TObject);
 procedure btnZoomOutClick(Sender: TObject);
 private
 { Private-Deklarationen }
 public
 { Public-Deklarationen }
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.btnLoadClick(Sender: TObject);
begin
 Image1.Picture.loadFromFile('anleitung.pdf');
 Label1.Caption:='Pagecount = ' + IntToStr(TPDFIma ge(Image1.Picture.Graphic).Pagecount);
end;

procedure TForm1.btnPrevClick(Sender: TObject);
begin
 TPDFImage(Image1.Picture.Graphic).PreviousPage;

end;

procedure TForm1.btnNextClick(Sender: TObject);
begin
 TPDFImage(Image1.Picture.Graphic).NextPage;
end;

procedure TForm1.btnZoomInClick(Sender: TObject);
begin
 TPDFImage(Image1.Picture.Graphic).Zoom:=TPDFImage (Image1.Picture.Graphic).Zoom + 25;
end;

procedure TForm1.btnZoomOutClick(Sender: TObject);
begin
 TPDFImage(Image1.Picture.Graphic).Zoom:=TPDFImage (Image1.Picture.Graphic).Zoom - 25;
end;

end.

Hints

It is important to add itfIPDFImage to your uses clause of the form using TImage / TPicture to
show PDF files because only then TPDFImage is registered at TPicture (graphics) as default
class for PDF Files to open.

To access the additional properties of TPDFImage for multi page PDF files you need to cast
the graphic of TPicture or TImage to TPDFImage like shown:

TPDFImage(Image1.Picture.Graphic).PreviousPage.

Additionally you can also create an instance of TPDFImage manually:

clsPDF:=TPDFImage.Create
clsPDF.CurrentPage:=3;
clsPDF.Resolution:=300;
clsPDF.LoadFromFile(‘annots.PDF’);

In this example CurrentPage and Resolution are set before loading the PDF so initially
page 3 is rendered with 300 DPI directly.

The resulting Bitmap can like show below directly send to the printer:

Printer.Canvas.Draw(0,0,clsPDF)

or shown on screen with Image1.Picture.Bitmap.Assign(clsPDF)

New to Version 1.2:
The Ghostscript API is completely rewritten to use dynamic loading.

If you

• like or
• hate this component or
• you just find it usefull or
• you want to ask something or
• you have a suggestion or
• you see some copyrights violations or
• you want to complain about my english

feel free to mail me at info@itf-it.de

Thomas Friedmann

ITF Ingenieurbüro

